Matlab

Matlab Temel Matris Operatörleri

Bu yazı 3 ay veya daha önce yayınlanmış olduğundan görülen linklerde, resimlerde veya kodlarda hata olabilir. Herhangi bir hata ile karşılaşırsanız bana buradan bildirebilirsiniz. Anlayışınız için teşekkür eder, keyifli okumalar dilerim.
matlab temel matris operatörleri

Bu yazımda Matlabte en çok kullanılan matlab komutları ve anlamlarını değindim sizler için. Unutulan veya takıldığınız komutları yorumdan sorabilirsiniz.

Kısayollar

clc % kod yazma ekranı temizler
clear all % workspace ekranını temizler
exit % matlabi kapatır

Temel İstatistiksel Komutlar

Bu komutlar matrise uygulanırsa sütun sütun işlem yapar.

max(A) % A matrisinin en büyük elemanını yazdırır.
% Ör 1:
% A = [1 4 6 5 10];
% ans = max(A)
% ans = 10
%
% Ör 2:
% B = [1 4 6 5 10; 2 4 6 7 3];
% ans = max(B)
% ans = [2 4 6 7 10]
min(A) % A matrisinin en küçük elemanını yazdırır.
% Ör 1:
% A = [1 4 6 5 10];
% ans = min(A)
% ans = 1
%
% Ör 2:
% B = [1 4 6 5 10; 2 4 6 7 3];
% ans = min(B)
% ans = [1 4 6 5 3]
[m, i] = max(A) % A sütun vektörünün en büyük elemanını(m) ve bunun satır numarasını verir(i).
% Ör:
% A = [1 6 9 0 18];
% [m, i] = max(A);
% Çıktılar;
% m = 18
% i = 5
[m, i] = min(A) % A sütun vektörünün en küçük elemanını(m) ve bunun satır numarasını verir(i).
% Ör:
% A = [1 6 9 0 18];
% [m, i] = min(A);
% Çıktılar;
% m = 0
% i = 4
mean(A) % A matrisinin vektörel elemanlarının ortalamasını yazdırır.
% Ör:
% A = [1 4 6 5 10];
% ans = mean(A)
% ans = 5.2000
%
% Ör 2:
% B = [1 4 6 5 10; 2 4 6 7 3];
% ans = mean(B)
% ans = [1.5000 4.0000 6.0000 6.0000 6.5000]
median(A) % A matrisinin vektörel elemanlarının ortanca değerini yazdırır.
% Ör:
% A = [1 4 6 5 10];
% ans = median(A);
% ans = 5
%
% Ör 2:
% B = [1 4 6 5 10; 2 4 6 7 3];
% ans = median(B)
% ans = [1.5000 4.0000 6.0000 6.0000 6.5000]
std(A) % A matrisinin elemanlarının standart sapmasını hesaplar.
% Ör:
% A = [1 4 6 5 10];
% ans = std(A)
% ans = 3.2711
%
% Ör 2:
% B = [1 4 6 5 10; 2 4 6 7 3];
% ans = std(B)
% ans = [0.70711 0.00000 0.00000 1.41421 4.94975]
sum(A) % A matrisinin elemanlarını toplar.
% Ör:
% A = [1 4 6 5 10];
% ans = sum(A)
% ans = 26
%
% Ör 2:
% B = [1 4 6 5 10; 2 4 6 7 3];
% ans = sum(B)
% ans = [3 8 12 12 13]
prod(A) % A matrisinin elemanlarını çarpar.
% Ör:
% A = [1 4 6 5 10];
% ans = prod(A)
% ans = 1200
%
% Ör 2:
% B = [1 4 6 5 10; 2 4 6 7 3];
% ans = prod(B)
% ans = [2 16 36 35 30]
length(A) % A matrisinin sütun sayısını verir.
% Ör:
% A = [1 4 6 5 10];
% ans = length(A);
% ans = 5
[m, n] = size(A) % A matrisinin satır sayısını(m) ve sütun sayısını(n) verir.
% Ör:
% A = [1 4 6 5 10; 1 8 4 10 5; 1 9 3 7 13];
% [m, n] = size(A);
% Çıktılar;
% m = 3
% n = 5
size(A, 1) % A matrisinin satır sayısını verir.
% Ör:
% A = [1 4 6 5 10; 1 8 4 10 5; 1 9 3 7 13];
% ans = size(A, 1);
% ans = 3
size(A, 2) % A matrisinin sütun sayısını verir.
% Ör:
% A = [1 4 6 5 10; 1 8 4 10 5; 1 9 3 7 13];
% ans = size(A, 2);
% ans = 5
sort(A) % A vektörünün elemanlarını küçükten büyüğe sıralar.
% Ör:
% A = [1 8 4 10 5];
% ans = sort(A);
% ans = [1 4 5 8 10]
sort(A, 2) % A matrisini satır satır küçükten büyüğe sırala demektir.
% Ör:
% A = [1 4 6 5 10; 1 8 4 10 5; 1 9 3 7 13];
% ans = sort(A, 2);
% ans = 
%     1     4     5     6    10
%     1     4     5     8    10
%     1     3     7     9    13
geomean(A) % A vektörünün geometrik ortalamasını hesaplar.
% Ör:
% A = [1 8 4 10 5];
% ans = geomean(A);
% ans = 4.3734
harmmean(A) % A vektörünün harmonik ortalamasını hesaplar.
% Ör:
% A = [1 8 4 10 5];
% ans = harmmean(A);
% ans = 2.9851

Logaritmik Fonksiyonlar

log10(a) % a'nın 10 tabanında logaritmasını hesaplar.
% Ör: log10(4)  için ans = 0.6021
exp(n) % e (eksponansiyel)'nin kuvvetini hesaplar.
% Ör: exp(4) e'nin 4. kuvvetini hesaplar.

Matematiksel Operatörler

+ % toplama
- % çıkarma
* % çarpma
/ % bölme
.* % elemanter çarpım
./ % elemanter bölme
.^ % elemanter üst alma
a+b % boyutları aynı olan a ve b matrisini toplar.
a-b % boyutları aynı olan a ve b matrislerinin farkını alır.
a*b % sütun sayısı m olan a matrisiyle satır sayısı m olan b matrisini çarpar.
a/b % b düzenli kare bir matrise (determinantı sıfırdan farklıysa), aynı boyutlu a matrisiyle; a*inv(b)işlemini yapar.
a.*b % boyutları aynı olan a ve b matrislerinin elemanlarını karşılıklı olarak çarpar.
a./b % boyutları aynı olan a ve b matrislerinin elemanlarını karşılıklı oranlar.
a^b % a'nın b'ninci kuvvetini hesaplar.
% Ör: 2^3 için ans = 8
abs(a) % a'nın mutlak değerini hesaplar
% Ör: abs(-16) için ans = 16
rats(a) % a'nın kesirli gösterimini hesaplar
% Ör: rats(0.4618) için ans = 272/589
sqrt(a) % a'nın karekökünü hesaplar Not: Bunu a^0.5 ile de yapabilirsiniz.
% Ör: sqrt(16) için ans = 4
mod(a, b) % a'nın b'e göre modunu hesaplar.
% Ör: mod(23, 5) için ans = 3

Mantıksal Operatörleri

&& % ve
|| % veya
~ % değil

Karar Operatörleri

> % büyüktür
< % küçüktür
>= % büyük eşittir
<= % küçük eşittir
== % eşittir
~= % eşit değildir

Sayı Yuvarlatma Fonksiyonları

round(a) % a doğal sayısını en yakın tam sayıya yuvarlar.
% Ör: round(4.3) için ans = 4
% Ör: round(4.6) için ans = 5
ceil(a) % a doğal sayısını kendinden daha büyük veya kendine eşit en yakın tam sayıya yuvarlar.
% Ör: ceil(4.3) için ans = 5
% Ör: ceil(4.6) için ans = 5
floor(a) % a doğal sayısını kendinden daha küçük veya kendine eşit en yakın tam sayıya yuvarlar.
% Ör: floor(4.3) için ans = 4
% Ör: floor(4.6) için ans = 4
fix(a) % a doğal sayısını sıfıra en yakın tam sayıya yuvarlar.
% Ör: fix(4.3) için ans = 4
% Ör: fix(4.6) için ans = 4

Sabit Terimler

pi % pi sayısı
eps % e sayısı
inf % sonsuz (belirsiz) ifadesi
rand % 0 ile 1 arasında rasgele sayı üretir
randn % -1 ile 1 arasında rasgele sayı üretir
realmin % en küçük kayan nokta
realmax % en büyük kayan nokta
Bir Cevap Yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

PREMIUM WORDPRESS TEMALARI
wordpress emlak teması
wordpress rent a car teması v2
%d blogcu bunu beğendi: